Riset Operasi Program Linear Masalah Minimisasi

PROGRAM LINEAR
Program linear adalah salah satu model matematika yang digunakan untuk
menyelesaikan masalah optimisasi, yaitu memaksimumkan atau meminimumkan
fungsi tujuan yang bergantung pada sejumlah variabel input.
Hal terpenting yang perlu kita lakukan adalah mencari tahu tujuan penyelesaian
masalah dan apa penyebab masalah tersebut.
Dua macam fungsi Program Linear:
Fungsi tujuan : mengarahkan analisa untuk mendeteksi tujuan perumusan
masalah
Fungsi kendala : untuk mengetahui sumber daya yang tersedia dan permintaan
atas sumber daya tersebut.

Masalah Minimisasi
Minimisasi dapat berupa meminimumkan biaya produksi. Solusi optimal tercapai
pada saat garis fungsi tujuan menyinggung daerah fasible yang terdekat dengan
titik origin.
Contoh :
Perusahaan makanan ROYAL merencanakan untuk membuat dua jenis makanan
yaitu Royal Bee dan Royal Jelly. Kedua jenis makanan tersebut mengandung
vitamin dan protein. Royal Bee paling sedikit diproduksi 2 unit dan Royal Jelly
paling sedikit diproduksi 1 unit. Tabel berikut menunjukkan jumlah vitamin dan
protein dalam setiap jenis makanan:
Jenis makanan Vitamin (unit) Protein (unit) Biaya per unit
(ribu rupiah)
Royal Bee 2 2 100
Royal Jelly 1 3 80
minimum kebutuhan 8 12
Bagaimana menentukan kombinasi kedua jenis makanan agar meminimumkan
biaya produksi.
Langkah – langkah:
1. Tentukan variabel
X1 = Royal Bee
X2 = Royal Jelly
2. Fungsi tujuan
Zmin = 100X1 + 80X2
3. Fungsi kendala
1) 2X1 + X2 8 (vitamin)
2) 2X1 + 3X2 12 (protein)
3) X1 2
4) X2 1

4. Membuat grafik
1) 2X1 + X2 = 8
X1 = 0, X2 = 8
X2 = 0, X1 = 4
2) 2X1 + 3X2 = 12
X1 = 0, X2 = 4
X2 = 0, X1 = 6
3) X1 = 2
4) X2 = 1

Solusi optimal tercapai pada titik B (terdekat dengan titik origin), yaitu
persilangan garis kendala (1) dan (2).
2X1 + X2 = 8
2X1 + 3X2 = 12
-2X2 = -4 X2 = 2
masukkan X2 ke kendala (1)
2X1 + X2 = 8
2X1 + 2 = 8
2 X1 = 6 X1 = 3
masukkan nilai X1 dan X2 ke Z
Z min = 100X1 + 80X2 = 100 . 3 + 80 . 2 = 300 + 160 = 460
Kesimpulan :
Untuk meminimumkan biaya produksi, maka X1 = 3 dan X2 = 2 dengan biaya
produksi 460 ribu rupiah.

Riset Operasi - Program Linear Masalah Maksimisasi

PROGRAM LINEAR
Program linear adalah salah satu model matematika yang digunakan untuk
menyelesaikan masalah optimisasi, yaitu memaksimumkan atau meminimumkan
fungsi tujuan yang bergantung pada sejumlah variabel input.
Hal terpenting yang perlu kita lakukan adalah mencari tahu tujuan penyelesaian
masalah dan apa penyebab masalah tersebut.
Dua macam fungsi Program Linear:
Fungsi tujuan : mengarahkan analisa untuk mendeteksi tujuan perumusan
masalah
Fungsi kendala : untuk mengetahui sumber daya yang tersedia dan permintaan
atas sumber daya tersebut.

Masalah Maksimisasi
Maksimisasi dapat berupa memaksimalkan keuntungan atau hasil.
Contoh:
PT LAQUNATEKSTIL memiliki sebuah pabrik yang akan memproduksi 2
jenis produk, yaitu kain sutera dan kain wol. Untuk memproduksi kedua
produk diperlukan bahan baku benang sutera, bahan baku benang wol dan
tenaga kerja. Maksimum penyediaan benang sutera adalah 60 kg per hari,
benang wol 30 kg per hari dan tenaga kerja 40 jam per hari. Kebutuhan setiap
unit produk akan bahan baku dan jam tenaga kerja dapat dilihat dalam tabel
berikut:
Jenis bahan baku Kg bahan baku & Jam tenaga kerja Maksimum
dan tenaga kerja Kain sutera Kain wol penyediaan
Benang sutera 2 3 60 kg
Benang wol - 2 30 kg
Tenaga kerja 2 1 40 jam
Kedua jenis produk memberikan keuntungan sebesar Rp 40 juta untuk kain
sutera dan Rp 30 juta untuk kain wol. Masalahnya adalah bagaimana
menentukan jumlah unit setiap jenis produk yang akan diproduksi setiap hari
agar keuntungan yang diperoleh bisa maksimal.

Langkah-langkah:
1) Tentukan variabel
X1=kain sutera
X2=kain wol
2) Fungsi tujuan
Zmax= 40X1 + 30X2
3) Fungsi kendala / batasan
1. 2X1 + 3X2 60 (benang sutera)
2. 2X2 30 (benang wol)
3. 2X1 + X2 40 (tenaga kerja)
4) Membuat grafik
1. 2X1 + 3 X 2=60
X1=0, X2 =60/3 = 20
X2=0, X1= 60/2 = 30
2. 2X2 30
X2=15
3. 2X1 + X2 40
X1=0, X2 = 40
X2=0, X1= 40/2 = 20

Cara mendapatkan solusi optimal:
1. Dengan mencari nilai Z setiap titik ekstrim.
Titik A
X1=0, X2=0
masukkan nilai X1 dan X2 ke Z
Z = 40 . 0 + 30 . 0 = 0
Titik B
X1=20, X2=0
masukkan nilai X1 dan X2 ke Z
Z = 40 . 20 + 30 . 0 = 800
Titik C
Mencari titik potong (1) dan (3)
2X1 + 3X2 = 60
2X1 + X2 = 40
2X2=20 X2=10
Masukkan X2 ke kendala (1)
2X1 + 3X2 = 60
2X1 + 3 . 10 = 60
2X1 + 30 = 60
2X1 = 30 X1 = 15
masukkan nilai X1 dan X2 ke Z
40X1 + 30X2 = 40 . 15 + 30 . 10 = 600 + 300 = 900 (optimal)
Titik D
2X2 = 30
X2 = 15
masukkan X2 ke kendala (1)
2X1 + 3 . 15 = 60
2X1 + 45 = 60
2X1 = 15 X1 = 7,5
masukkan nilai X1 dan X2 ke Z
Z = 40 . 7,5 + 30 . 15 = 300 + 450 = 750
Titik E
X2 = 15
X1 = 0
masukkan nilai X1 dan X2 ke Z
Z = 40 . 0 + 30 .15 = 450
Kesimpulan :
untuk memperoleh keuntungan optimal, maka X1 = 15 dan X2 = 10 dengan
keuntungan sebesar Rp 900 juta.
2. Dengan cara menggeser garis fungsi tujuan.
Solusi optimal akan tercapai pada saat garis fungsi tujuan menyinggung daerah
feasible (daerah yang diliputi oleh semua kendala) yang terjauh dari titik origin.
Pada gambar, solusi optimal tercapai pada titik C yaitu persilangan garis kendala
(1) dan (3).
Titik C
Mencari titik potong (1) dan (3)
2X1 + 3X2 = 60
2X1 + X2 = 40
2X2=20
X2=10
Masukkan X2 ke kendala (1)
2X1 + 3X2 = 60
2X1 + 3 . 10 = 60
2X1 + 30 = 60
2X1 = 30 X1 = 15
masukkan nilai X1 dan X2 ke Z
40X1 + 30X2 = 40 . 15 + 30 . 10 = 600 + 300 = 900